Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Evol Appl ; 17(3): e13676, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505216

ABSTRACT

The decline of lions (Panthera leo) in Kenya has raised conservation concerns about their overall population health and long-term survival. This study aimed to assess the genetic structure, differentiation and diversity of lion populations in the country, while considering the influence of past management practices. Using a lion-specific Single Nucleotide Polymorphism (SNP) panel, we genotyped 171 individuals from 12 populations representative of areas with permanent lion presence. Our results revealed a distinct genetic pattern with pronounced population structure, confirmed a north-south split and found no indication of inbreeding in any of the tested populations. Differentiation seems to be primarily driven by geographical barriers, human presence and climatic factors, but management practices may have also affected the observed patterns. Notably, the Tsavo population displayed evidence of admixture, perhaps attributable to its geographic location as a suture zone, vast size or past translocations, while the fenced populations of Lake Nakuru National Park and Solio Ranch exhibited reduced genetic diversity due to restricted natural dispersal. The Amboseli population had a high number of monomorphic loci likely reflecting a historical population decline. This illustrates that patterns of genetic diversity should be seen in the context of population histories and that future management decisions should take these insights into account. To address the conservation implications of our findings, we recommend prioritizing the maintenance of suitable habitats to facilitate population connectivity. Initiation of genetic restoration efforts and separately managing populations with unique evolutionary histories is crucial for preserving genetic diversity and promoting long-term population viability.

2.
Am Nat ; 203(4): E107-E127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489775

ABSTRACT

AbstractUnderstanding and predicting the evolutionary responses of complex morphological traits to selection remains a major challenge in evolutionary biology. Because traits are genetically correlated, selection on a particular trait produces both direct effects on the distribution of that trait and indirect effects on other traits in the population. The correlations between traits can strongly impact evolutionary responses to selection and may thus impose constraints on adaptation. Here, we used museum specimens and comparative quantitative genetic approaches to investigate whether the covariation among cranial traits facilitated or constrained the response to selection during the major dietary transitions in one of the world's most ecologically diverse mammalian families-the phyllostomid bats. We reconstructed the set of net selection gradients that would have acted on each cranial trait during the major transitions to feeding specializations and decomposed the selection responses into their direct and indirect components. We found that for all transitions, most traits capturing craniofacial length evolved toward adaptive directions owing to direct selection. Additionally, we showed instances of dietary transitions in which the complex interaction between the patterns of covariation among traits and the strength and direction of selection either constrained or facilitated evolution. Our work highlights the importance of considering the within-species covariation estimates to quantify evolvability and to disentangle the relative contribution of variational constraints versus selective causes for observed patterns.


Subject(s)
Chiroptera , Selection, Genetic , Humans , Animals , Chiroptera/genetics , Phenotype , Plant Leaves , Biological Evolution
3.
Animals (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38066967

ABSTRACT

Zoo animals are crucial for conserving and potentially re-introducing species to the wild, yet it is known that the morphology of captive animals differs from that of wild animals. It is important to know how and why zoo and wild animal morphology differs to better care for captive animals and enhance their survival in reintroductions, and to understand how plasticity may influence morphology, which is supposedly indicative of evolutionary relationships. Using museum collections, we took 56 morphological measurements of skulls and mandibles from 617 captive and wild lions and tigers, reflecting each species' recent historical range. Linear morphometrics were used to identify differences in size and shape. Skull size does not differ between captive and wild lions and tigers, but skull and mandible shape does. Differences occur in regions associated with biting, indicating that diet has influenced forces acting upon the skull and mandible. The diets of captive big cats used in this study predominantly consisted of whole or partial carcasses, which closely resemble the mechanical properties of wild diets. Thus, we speculate that the additional impacts of killing, manipulating and consuming large prey in the wild have driven differentiation between captive and wild big cats.

4.
Mol Phylogenet Evol ; 188: 107890, 2023 11.
Article in English | MEDLINE | ID: mdl-37517508

ABSTRACT

African-Malagasy species of the bat genus Miniopterus are notable both for the dramatic increase in the number of newly recognized species over the last 15 years, as well as for the profusion of new taxa from Madagascar and the neighboring Comoros. Since 2007, seven new Malagasy Miniopterus species have been described compared to only two new species since 1936 from the Afrotropics. The conservative morphology of Miniopterus and limited geographic sampling in continental Africa have undoubtedly contributed to the deficit of continental species. In addition to uncertainty over species limits, phylogenetic relationships of Miniopterus remain mostly unresolved, particularly at deeper backbone nodes. Previous phylogenetic studies were based on limited taxon sampling and/or limited genetic sampling involving no more than five loci. Here, we conduct the first phylogenomic study of the Afrotropical Miniopteridae by analyzing up to 3772 genome-wide ultraconserved elements (UCEs) from historic and modern samples of 70 individuals from 25 Miniopterus species/lineages. We analyze multiple datasets of varying degrees of completeness (70, 90, and 100 percent complete) using partitioned concatenated maximum likelihood and multispecies coalescent methods. Our well-supported, species-level phylogenies resolved most (6/8 or 7/8) backbone nodes and strongly support for the first time the monophyly of the Malagasy radiation. We inferred the crown age of African Miniopteridae in the late Miocene (10.4 Ma), while the main lineages of Miniopterus appear to have contemporaneously diversified in two sister radiations in the Afrotropics and Madagascar. Species-level divergence of 23 of 25 African + Malagasy Miniopterus were estimated to have 95 % HPDs that overlap with the late Miocene (5.3-10.4 Ma). We present ancestral range estimates that unambiguously support a continental African radiation that originated in the Zambezian and Somalian/Ethiopian biogeographic regions, but we cannot rule out back colonization of Africa from Madagascar. The phylogeny indicates genetic support for up to seven new species.


Subject(s)
Chiroptera , Humans , Animals , Phylogeny , Chiroptera/genetics , Africa , Madagascar
5.
Zookeys ; 1169: 65-85, 2023.
Article in English | MEDLINE | ID: mdl-38328029

ABSTRACT

Bat flies (Diptera: Nycteribiidae and Streblidae) are hematophagous ectoparasites of bats characterized by viviparous pupiparity and generally high host specificity. Nycteribiid bat flies are wingless, morphologically constrained, and are most diverse in the Eastern Hemisphere. Africa hosts approximately 22% of global bat biodiversity and nearly one-third of all African bat species occur in Kenya, one of Africa's most bat-rich countries. However, records of nycteribiid bat fly diversity in Kenya remain sparse and unconsolidated. This paper combines all past species records of nycteribiid bat flies with records from a survey of 4,255 Kenyan bats across 157 localities between 2006 and 2015. A total of seven nycteribiid genera and 17 species are recorded, with seven species from the recent 'Bats of Kenya' surveys representing previously undocumented country records. Host associations and geographic distributions based on all available records are also described. This comprehensive species catalog addresses and further emphasizes the need for similar investigations of nycteribiid biodiversity across Africa.

6.
Proc Natl Acad Sci U S A ; 119(49): e2207845119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442115

ABSTRACT

Asia's rich species diversity has been linked to its Cenozoic geodiversity, including active mountain building and dramatic climatic changes. However, prior studies on the diversification and assembly of Asian faunas have been derived mainly from analyses at taxonomic or geographic scales too limited to offer a comprehensive view of this complex region's biotic evolution. Here, using the class Mammalia, we built historical biogeographic models drawn on phylogenies of 1,543 species occurring across Asia to investigate how and when the mammal diversity in Asian regions and mountain hotspots was assembled. We explore the roles of in situ speciation, colonization, and vicariance and geoclimatic events to explain the buildup of Asia's regional mammal diversity through time. We found that southern Asia has served as the main cradle of Asia's mammal diversity. Present-day species richness in other regions is mainly derived from colonization, but by the Miocene, in situ speciation increased in importance. The high biodiversity present in the mountain hotspots (Himalayas and Hengduan) that flank the Qinghai-Tibetan plateau is a product of high colonization instead of in situ speciation, making them important centers of lineage accumulation. Overall, Neogene was marked by great diversification and migrations across Asia and surrounding continents but Paleogene environments already hosted rich mammal assemblages. Our study revealed that synchronous diversification bursts and biotic turnovers are temporally associated with tectonic events (mountain building, continental collisions) and drastic reorganization of climate (aridification of Asian interior, intensification of Asian monsoons, sea retreat) that took place throughout the Cenozoic in Asia.


Subject(s)
Biodiversity , Mammals , Animals , Humans , Mammals/genetics , Asia , Asian People , Climate
7.
Parasit Vectors ; 15(1): 392, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36303252

ABSTRACT

BACKGROUND: The recognition and delineation of morphologically indistinguishable cryptic species can have broad implications for wildlife conservation, disease ecology and accurate estimates of biodiversity. Parasites are intriguing in the study of cryptic speciation because unique evolutionary pressures and diversifying factors are generated by ecological characteristics of host-parasite relationships, including host specificity. Bat flies (Diptera: Nycteribiidae and Streblidae) are obligate, hematophagous ectoparasites of bats that generally exhibit high host specificity. One rare exception is Penicillidia fulvida (Diptera: Nycteribiidae), an African bat fly found in association with many phylogenetically distant hosts. One explanation for P. fulvida's extreme polyxeny is that it may represent a complex of host-specific yet cryptic species, an increasingly common finding in molecular genetic studies of supposed generalist parasites. METHODS: A total of 65 P. fulvida specimens were collected at 14 localities across Kenya, from bat species representing six bat families. Mitochondrial cytochrome c oxidase subunit 1 (COI) and nuclear 28S ribosomal RNA (rRNA) sequences were obtained from 59 specimens and used to construct Bayesian and maximum likelihood phylogenies. Analysis of molecular variance was used to determine how genetic variation in P. fulvida was allocated among host taxa. RESULTS: The 28S rRNA sequences studied were invariant within P. fulvida. Some genetic structure was present in the COI sequence data, but this could be more parsimoniously explained by geography than host family. CONCLUSIONS: Our results support the status of P. fulvida as a rare example of a single bat fly species with primary host associations spanning multiple bat families. Gene flow among P. fulvida utilizing different host species may be promoted by polyspecific roosting behavior in bats, and host preference may also be malleable based on bat assemblages occupying shared roosts. The proclivity of generalist parasites to switch hosts makes them more likely to vector or opportunistically transmit pathogens across host species boundaries. Consequently, the presence of polyxenous bat flies is an important consideration to disease ecology as bat flies become increasingly known to be associated with bat pathogens.


Subject(s)
Chiroptera , Diptera , Animals , Host Specificity , Bayes Theorem , Host-Parasite Interactions , Phylogeny , Diptera/genetics
8.
Evolution ; 76(8): 1790-1805, 2022 08.
Article in English | MEDLINE | ID: mdl-35794070

ABSTRACT

Investigations of phenotypic disparity across geography often ignore macroevolutionary processes. As a corollary, the random null expectations to which disparity is compared and interpreted may be unrealistic. We tackle this issue by representing, in geographical space, distinct processes of phenotypic evolution underlying ecological disparity. Under divergent natural selection, assemblages in a given region should have empirical disparity higher than expected under an evolutionarily oriented null model, whereas the opposite may indicate constraints on phenotypic evolution. We gathered phylogenies, biogeographic distributions, and data on the skull morphology of sigmodontine rodents to discover which regions of the Neotropics were more influenced by divergent, neutral, or constrained phenotypic evolution. We found that regions with higher disparity than expected by the evolutionary-oriented null model, in terms of both size and shape, were concentrated in the Atlantic Forest, suggesting a larger role for divergent natural selection there. Phenotypic disparity in the rest of South America, mainly the Amazon basin, northeastern Brazil, and Southern Andes, was constrained-lower than predicted by the evolutionary model. We also demonstrated equivalence between the disparity produced by randomization-based null models and constrained-evolution null models. Therefore, including evolutionary simulations into the null modeling framework used in ecophylogenetics can strengthen inferences on the processes underlying phenotypic evolution.


Subject(s)
Biological Evolution , Rodentia , Animals , Brazil , Phylogeny , Rodentia/genetics , Selection, Genetic
9.
Nature ; 602(7897): 449-454, 2022 02.
Article in English | MEDLINE | ID: mdl-35082447

ABSTRACT

Phylogenomics of bats suggests that their echolocation either evolved separately in the bat suborders Yinpterochiroptera and Yangochiroptera, or had a single origin in bat ancestors and was later lost in some yinpterochiropterans1-6. Hearing for echolocation behaviour depends on the inner ear, of which the spiral ganglion is an essential structure. Here we report the observation of highly derived structures of the spiral ganglion in yangochiropteran bats: a trans-otic ganglion with a wall-less Rosenthal's canal. This neuroanatomical arrangement permits a larger ganglion with more neurons, higher innervation density of neurons and denser clustering of cochlear nerve fascicles7-13. This differs from the plesiomorphic neuroanatomy of Yinpterochiroptera and non-chiropteran mammals. The osteological correlates of these derived ganglion features can now be traced into bat phylogeny, providing direct evidence of how Yangochiroptera differentiated from Yinpterochiroptera in spiral ganglion neuroanatomy. These features are highly variable across major clades and between species of Yangochiroptera, and in morphospace, exhibit much greater disparity in Yangochiroptera than Yinpterochiroptera. These highly variable ganglion features may be a neuroanatomical evolutionary driver for their diverse echolocating strategies4,14-17 and are associated with the explosive diversification of yangochiropterans, which include most bat families, genera and species.


Subject(s)
Biological Evolution , Chiroptera , Ear, Inner , Echolocation , Spiral Ganglion , Animals , Chiroptera/anatomy & histology , Chiroptera/classification , Chiroptera/physiology , Ear, Inner/anatomy & histology , Ear, Inner/innervation , Ear, Inner/physiology , Echolocation/physiology , Phylogeny , Spiral Ganglion/anatomy & histology , Spiral Ganglion/physiology
10.
J Evol Biol ; 34(2): 391-402, 2021 02.
Article in English | MEDLINE | ID: mdl-33617138

ABSTRACT

The mandible of vertebrates serves as insertion area for masticatory muscles that originate on the skull, and its functional properties are subject to selective forces related to trophic ecology. The efficiency of masticatory muscles can be measured as mechanical advantage on the mandible, which, in turn, has the property of correlating with bite force and shape. In the present work, we quantify the mechanical advantage of the mandible of akodontine rodents, which present a diverse radiation of insectivorous specialists, to assess their relationship to the estimated bite force and diet. We also tested the degree of morphofunctional convergence in response to insectivory on the group. We found the mechanical advantages to be convergent on insectivorous species, and associated with the estimated bite force, with higher mechanical advantages in species with a stronger bite and short, robust mandibles and lower mechanical advantages in insectivorous species with weaker bites and more elongated, dorso-ventrally compressed mandibles. Insectivorous species of Akodontini are functional specialists for the consumption of live prey and may exploit the resources that shrews, moles and hedgehogs consume elsewhere.


Subject(s)
Biological Evolution , Bite Force , Feeding Behavior/physiology , Mandible/physiology , Sigmodontinae/physiology , Animals , Diet , Insecta
11.
Ecol Evol ; 11(24): 18676-18690, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003701

ABSTRACT

We evaluated whether evolution is faster at ecotones as niche shifts may be needed to persist under unstable environment. We mapped diet evolution along the evolutionary history of 350 sigmodontine species. Mapping was used in three new tip-based metrics of trait evolution - Transition Rates, Stasis Time, and Last Transition Time - which were spatialized at the assemblage level (aTR, aST, aTL). Assemblages were obtained by superimposing range maps on points located at core and ecotone of the 93 South American ecoregions. Using Linear Mixed Models, we tested whether ecotones have species with more changes from the ancestral diet (higher aTR), have maintained the current diet for a shorter time (lower aST), and have more recent transitions to the current diet (lower aLT) than cores. We found lower aTR, and higher aST and aLT at ecotones than at cores. Although ecotones are more heterogeneous, both environmentally and in relation to selection pressures they exert on organisms, ecotone species change little from the ancestral diet as generalist habits are necessary toward feeding in ephemeral environments. The need to incorporate phylogenetic uncertainty in tip-based metrics was evident from large uncertainty detected. Our study integrates ecology and evolution by analyzing how fast trait evolution is across space.

12.
Zookeys ; 929: 117-161, 2020.
Article in English | MEDLINE | ID: mdl-32390744

ABSTRACT

The Old World leaf-nosed bats (Hipposideridae) are aerial and gleaning insectivores that occur throughout the Paleotropics. Both their taxonomic and phylogenetic histories are confused. Until recently, the family included genera now allocated to the Rhinonycteridae and was recognized as a subfamily of Rhinolophidae. Evidence that Hipposideridae diverged from both Rhinolophidae and Rhinonycteridae in the Eocene confirmed their family rank, but their intrafamilial relationships remain poorly resolved. We examined genetic variation in the Afrotropical hipposiderids Doryrhina, Hipposideros, and Macronycteris using relatively dense taxon-sampling throughout East Africa and neighboring regions. Variation in both mitochondrial (cyt-b) and four nuclear intron sequences (ACOX2, COPS, ROGDI, STAT5) were analyzed using both maximum likelihood and Bayesian inference methods. We used intron sequences and the lineage delimitation method BPP-a multilocus, multi-species coalescent approach-on supported mitochondrial clades to identify those acting as independent evolutionary lineages. The program StarBEAST was used on the intron sequences to produce a species tree of the sampled Afrotropical hipposiderids. All genetic analyses strongly support generic monophyly, with Doryrhina and Macronycteris as Afrotropical sister genera distinct from a Paleotropical Hipposideros; mitochondrial analyses interpose the genera Aselliscus, Coelops, and Asellia between these clades. Mitochondrial analyses also suggest at least two separate colonizations of Africa by Asian groups of Hipposideros, but the actual number and direction of faunal interchanges will hinge on placement of the unsampled African-Arabian species H. megalotis. Mitochondrial sequences further identify a large number of geographically structured clades within species of all three genera. However, in sharp contrast to this pattern, the four nuclear introns fail to distinguish many of these groups and their geographic structuring disappears. Various distinctive mitochondrial clades are consolidated in the intron-based gene trees and delimitation analyses, calling into question their evolutionary independence or else indicating their very recent divergence. At the same time, there is now compelling genetic evidence in both mitochondrial and nuclear sequences for several additional unnamed species among the Afrotropical Hipposideros. Conflicting appraisals of differentiation among the Afrotropical hipposiderids based on mitochondrial and nuclear loci must be adjudicated by large-scale integrative analyses of echolocation calls, quantitative morphology, and geometric morphometrics. Integrative analyses will also help to resolve the challenging taxonomic issues posed by the diversification of the many lineages associated with H. caffer and H. ruber.

13.
mSystems ; 4(6)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31719140

ABSTRACT

Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats. In contrast to recent studies of host-microbe associations in other mammals, we found no correlation between chiropteran phylogeny and bacterial community dissimilarity across the three anatomical sites sampled. For all anatomical sites, we found host species identity and geographic locality to be strong predictors of microbial community composition and observed a positive correlation between elevation and bacterial richness. Last, we identified significantly different bacterial associations within the gut microbiota of insectivorous and frugivorous bats. We conclude that the gut, oral, and skin microbiota of bats are shaped predominantly by ecological factors and do not exhibit the same degree of phylosymbiosis observed in other mammals.IMPORTANCE This study is the first to provide a comprehensive survey of bacterial symbionts from multiple anatomical sites across a broad taxonomic range of Afrotropical bats, demonstrating significant associations between the bat microbiome and anatomical site, geographic locality, and host identity-but not evolutionary history. This study provides a framework for future systems biology approaches to examine host-symbiont relationships across broad taxonomic scales, emphasizing the need to elucidate the interplay between host ecology and evolutionary history in shaping the microbiome of different anatomical sites.

14.
BMC Evol Biol ; 19(1): 166, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31434566

ABSTRACT

BACKGROUND: The Old World insectivorous bat genus Rhinolophus is highly speciose. Over the last 15 years, the number of its recognized species has grown from 77 to 106, but knowledge of their interrelationships has not kept pace. Species limits and phylogenetic relationships of this morphologically conservative group remain problematic due both to poor sampling across the Afrotropics and to repeated instances of mitochondrial-nuclear discordance. Recent intensive surveys in East Africa and neighboring regions, coupled with parallel studies by others in West Africa and in Southern Africa, offer a new basis for understanding its evolutionary history. RESULTS: We investigated phylogenetic relationships and intraspecific genetic variation in the Afro-Palearctic clade of Rhinolophidae using broad sampling. We sequenced mitochondrial cytochrome-b (1140 bp) and four independent and informative nuclear introns (2611 bp) for 213 individuals and incorporated sequence data from 210 additional individuals on GenBank that together represent 24 of the 33 currently recognized Afrotropical Rhinolophus species. We addressed the widespread occurrence of mito-nuclear discordance in Rhinolophus by inferring concatenated and species tree phylogenies using only the nuclear data. Well resolved mitochondrial, concatenated nuclear, and species trees revealed phylogenetic relationships and population structure of the Afrotropical species and species groups. CONCLUSIONS: Multiple well-supported and deeply divergent lineages were resolved in each of the six African Rhinolophus species groups analyzed, suggesting as many as 12 undescribed cryptic species; these include several instances of sympatry among close relatives. Coalescent lineage delimitation offered support for new undescribed lineages in four of the six African groups in this study. On the other hand, two to five currently recognized species may be invalid based on combined mitochondrial and/or nuclear phylogenetic analyses. Validation of these cryptic lineages as species and formal relegation of current names to synonymy will require integrative taxonomic assessments involving morphology, ecology, acoustics, distribution, and behavior. The resulting phylogenetic framework offers a powerful basis for addressing questions regarding their ecology and evolution.


Subject(s)
Chiroptera/classification , Chiroptera/genetics , Phylogeny , Africa , Animals , Cell Nucleus/genetics , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Introns , Sympatry
15.
Proc Natl Acad Sci U S A ; 116(25): 12212-12219, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31160448

ABSTRACT

A massive reduction in CO2 emissions from fossil fuel burning is required to limit the extent of global warming. However, carbon-based liquid fuels will in the foreseeable future continue to be important energy storage media. We propose a combination of largely existing technologies to use solar energy to recycle atmospheric CO2 into a liquid fuel. Our concept is clusters of marine-based floating islands, on which photovoltaic cells convert sunlight into electrical energy to produce H2 and to extract CO2 from seawater, where it is in equilibrium with the atmosphere. These gases are then reacted to form the energy carrier methanol, which is conveniently shipped to the end consumer. The present work initiates the development of this concept and highlights relevant questions in physics, chemistry, and mechanics.

16.
J Synchrotron Radiat ; 26(Pt 3): 874-886, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074452

ABSTRACT

The Bernina instrument at the SwissFEL Aramis hard X-ray free-electron laser is designed for studying ultrafast phenomena in condensed matter and material science. Ultrashort pulses from an optical laser system covering a large wavelength range can be used to generate specific non-equilibrium states, whose subsequent temporal evolution can be probed by selective X-ray scattering techniques in the range 2-12 keV. For that purpose, the X-ray beamline is equipped with optical elements which tailor the X-ray beam size and energy, as well as with pulse-to-pulse diagnostics that monitor the X-ray pulse intensity, position, as well as its spectral and temporal properties. The experiments can be performed using multiple interchangeable endstations differing in specialization, diffractometer and X-ray analyser configuration and load capacity for specialized sample environment. After testing the instrument in a series of pilot experiments in 2018, regular user operation begins in 2019.

17.
Zool Res ; 40(1): 3-52, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30348934

ABSTRACT

Kenya has a rich mammalian fauna. We reviewed recently published books and papers including the six volumes of Mammals of Africa to develop an up-to-date annotated checklist of all mammals recorded from Kenya. A total of 390 species have been identified in the country, including 106 species of rodents, 104 species of bats, 63 species of even-toed ungulates (including whales and dolphins), 36 species of insectivores and carnivores, 19 species of primates, five species of elephant shrews, four species of hyraxes and odd-toed ungulates, three species of afrosoricids, pangolins, and hares, and one species of aardvark, elephant, sirenian and hedgehog. The number of species in this checklist is expected to increase with additional surveys and as the taxonomic status of small mammals (e.g., bats, shrews and rodents) becomes better understood.


Subject(s)
Animal Distribution , Biodiversity , Mammals , Animals , Kenya
18.
J Zool Syst Evol Res ; 57(4): 1019-1038, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31894177

ABSTRACT

The bat family Nycteridae contains only the genus Nycteris, which comprises 13 currently recognized species from Africa and the Arabian Peninsula, one species from Madagascar, and two species restricted to Malaysia and Indonesia in South-East Asia. We investigated genetic variation, clade membership, and phylogenetic relationships in Nycteridae with broad sampling across Africa for most clades. We sequenced mitochondrial cytochrome b (cytb) and four independent nuclear introns (2,166 bp) from 253 individuals. Although our samples did not include all recognized species, we recovered at least 16 deeply divergent monophyletic lineages using independent mitochondrial and multilocus nuclear datasets in both gene tree and species tree analyses. Mean pairwise uncorrected genetic distances among species-ranked Nycteris clades (17% for cytb and 4% for concatenated introns) suggest high levels of phylogenetic diversity in Nycteridae. We found a large number of designated clades whose members are distributed wholly or partly in East Africa (10 of 16 clades), indicating that Nycteris diversity has been historically underestimated and raising the possibility that additional unsampled and/or undescribed Nycteris species occur in more poorly sampled Central and West Africa. Well-resolved mitochondrial, concatenated nuclear, and species trees strongly supported African ancestry for SE Asian species. Species tree analyses strongly support two deeply diverged subclades that have not previously been recognized, and these clades may warrant recognition as subgenera. Our analyses also strongly support four traditionally recognized species groups of Nycteris. Mitonuclear discordance regarding geographic population structure in Nycteris thebaica appears to result from male-biased dispersal in this species. Our analyses, almost wholly based on museum voucher specimens, serve to identify species-rank clades that can be tested with independent datasets, such as morphology, vocalizations, distributions, and ectoparasites. Our analyses highlight the need for a comprehensive revision of Nycteridae.

19.
PeerJ ; 6: e4864, 2018.
Article in English | MEDLINE | ID: mdl-29844995

ABSTRACT

BACKGROUND: Free-tailed bats of the genus Otomops are poorly known, and most species are documented from a handful of widely scattered localities. Recently, two allopatric species of Otomops were recognized in continental Africa: Otomops martiensseni (Matschie, 1897) in southern, central and western Africa, and the new species O. harrisoni Ralph et al., 2015 in the northeast and in Yemen. METHODS: We collected additional samples of Otomops in Kenya and Rwanda where the ranges of these taxa approach one another to clarify their geographic ranges and taxonomic status. Mitochondrial and nuclear intron sequences served to identify and delimit species; we also documented their echolocation call variation and ectoparasite complements. RESULTS: Otomops martiensseni, the southern African species, was documented in northern Kenya in Marsabit National Park. O. harrisoni, the northeastern African-Arabian species, was documented in southern Kenya and in a cave in Musanze District, Rwanda. Moreover, individuals of both species were found together at the Musanze cave, establishing them in precise spatial and temporal sympatry. Analyses of mitochondrial and nuclear loci identify no evidence of admixture between these forms, although available samples limit the power of this analysis. Echolocation call differences are also apparent among the three localities we analyzed. Three orders of insects and two families of mites are newly reported as ectoparasites of O. harrisoni. DISCUSSION: Our results corroborate species rank for O. harrisoni and establish a zone of potential geographic overlap with O. martiensseni spanning at least 800 km of latitude. The new records establish the species in sympatry in northern Rwanda and add an additional species to the bat faunas of both Kenya and Rwanda. Future studies are needed to understand Otomops roosting requirements and movements, thereby explaining the paucity of known colonies and yielding better estimates of their conservation status. The discovery of mixed roosting associations in Rwanda invites further investigation.

20.
PLoS One ; 13(4): e0195084, 2018.
Article in English | MEDLINE | ID: mdl-29624590

ABSTRACT

Dasypus is the most speciose genus of the order Cingulata, including approximately 40% of known living armadillos. Nine species are currently recognized, although comprehensive analyses of the entire genus have never been done. Our aim is to revise the taxonomy of the long-nosed armadillos and properly define the taxa. We examined 2126 specimens of Dasypus preserved in 39 different museum collections, including 17 type specimens. Three complementary methods were applied to explore morphological datasets both qualitatively and quantitatively. Qualitative morphological variation in discrete characters was assessed by direct observations of specimens. Linear morphometric variation was based on external data and cranial measurements of 887 adult skulls. The shape and size of the skull was abstracted through two-dimensional geometric morphometric analyses of dorsal, lateral and ventral views of respectively 421, 211, and 220 adult specimens. Our results converge on the recognition of eight living species (D. beniensis, D. kappleri, D. mazzai, D. novemcinctus, D. pastasae, D. pilosus, D. sabanicola, and D. septemcinctus), and three subspecies of D. septemcinctus (D. s. septemcinctus, D. s. hybridus, and a new subspecies from Cordoba described here). Information on type material, diagnosis, distribution, and taxonomic comments for each taxon are provided. We designate a lectotype for D. novemcinctus; and a neotype for Loricatus hybridus (= D. septemcinctus hybridus).


Subject(s)
Armadillos/anatomy & histology , Armadillos/classification , Animal Distribution , Animals , Geography , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...